Propagation of High Energy Particles in Cosmic Magnetic Fields

Rafael Alves Batista

Beercroft Institute for Particle Astrophysics and Cosmology University of Oxford

rafael.alvesbatista@physics.ox.ac.uk

Rio de Janeiro August 20th, 2015

- the presence of photon backgrounds (e.g. CMB, CIB, ...) permeating the universe provide a medium wherein interactions may take place
- cosmic magnetic fields (galactic and extragalactic) can affect the trajectory of particles

photon backgrounds

cosmic magnetic fields

- are there cosmological magnetic fields?
- how did the magnetic fields in the universe came to be?
 - astrophysical scenarios: magnetic fields are generated during structure formation
 e.g.Biermann battery [Biermann 1950] and later amplified by dynamos [Zeldovich+ 1980],
 - cosmological scenarios: magnetic fields are created during phase transitions (e.g. [Sigl+ 1997]), inflation (e.g.[Turner & Widrow 1988])
- lower limits from electromagnetic cascades
- upper limits from Zeeman splitting

cosmic rays

interaction processes and energy losses

pion production

$$p+\gamma
ightarrow \Delta^+
ightarrow egin{cases} p+\pi^0\ n+\pi^+ \end{cases}$$

pair production $-\frac{dE_{A,Z}}{dt} = 3\alpha\sigma_T h^{-3}Z^2 m_e c^2 (k_B T)^2 f(\Gamma)$

expansion of the u	universe	
dEH	/0 1	
$-\frac{dt}{dt} - \frac{dt}{1+t}$	$-z \overline{\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}}$	

photodisintegration $\frac{1}{\lambda(\Gamma)} = \int_{E_{min}}^{E_{max}} n(\epsilon, z) \overline{\sigma}(\epsilon'_{max} = 2\Gamma\epsilon) d\epsilon$

6

interactions and energy losses

diffusion in extragalactic magnetic fields

RAB & G. Sigl. JCAP 1411 (2014) 031 [arXiv:1407.6150]

- magnetic horizon effects due to the confinement of cosmic rays in magnetised regions
- "realistic" EGMF models from MHD simulations were used → on average, the large fraction of the volume occupied by voids imply large horizons at EeV energies
- in the case of strong magnetic fields, the spectrum is suppressed at ~ EeV energies due to the horizon
- this is related to the "hard spectrum problem" → the hard spectral indices obtained in combined spectrum-composition fits cannot be explained by magnetic horizons

magnetic horizons of cosmic rays

RAB & G. Sigl. JCAP 1411 (2014) 031 [arXiv:1407.6150]

simulating the propagation of UHECRs

RAB, D. Boncioli, A. di Matteo, A. van Vliet, D. Walz [arXiv:1508.01824]

- many public codes: CRPropa [Armengaud+ 2007, Kampert+ 2013, RAB+ 2013], SimProp [Aloisio+ 2012], HERMES [Domenico 2013],
 - TransportCR [Kalashev & Kido 2015]
- two treatments:
 - transport equations
 - full Monte Carlo
- magnetic fields are often neglected when simulating only spectrum and composition, but this may not be a good approximation

possible sources of uncertainties

- computational treatment
- stochasticity of photopion production
- uncertainties in EBL models
- photodisintegration cross sections
- scaling of α-channels

CRPropa 3

- code available in: crpropa.desy.de
- complete redesign of CRPropa 2 [Kampert+ 2013]
- modular structure and python steering
- parallel processing with OpenMP®
- 3D simulations with cosmology ("4D mode")
- galactic magnetic field through lenses
- Monte Carlo photon propagation with EleCa code
- more EBL models
- improved interaction rate tables
- updated photodisintegration cross sections
- magnetic field from large scale structure simulations (SPH and AMR)

RAB et al. CRPropa paper - in preparation - coming soon RAB et al. EPJ Web of Conferences 99 (2015) 13004 [arXiv:1411.259] RAB et al. J. Phys.: Conf. Ser. 608 012076 [arXiv:1410.5323] RAB et al. Proceedings ICRC 2013 [arXiv:1307.2643]

cosmological effects in 3D simulations

- "benchmark scenario": distribution from Dolag *et al.* [Dolag+ 2004] modulated by the magnetic field-density profile from Miniati [Miniati 2002]
- \bullet cosmological effects are indeed relevant \rightarrow "4D" simulations needed

is cosmic ray astronomy possible?

- plots show cumulative deflections
- Sigl+ 2004: deflections are large \rightarrow UHECR astronomy might not be possible
- Dolag+ 2004: deflections are small \rightarrow UHECR astronomy might be possible
- depending on the composition deflections can be even higher!

is cosmic ray astronomy possible?

- plots show cumulative deflections
- Sigl+ 2004: deflections are large \rightarrow UHECR astronomy might not be possible
- Dolag+ 2004: deflections are small \rightarrow UHECR astronomy might be possible
- depending on the composition deflections can be even higher!

will we ever be able to identify the sources of UHECRs?

simulations of the magnetised cosmic web

RAB, M.-S. Shin, J.Devriendt, D. Semikoz, G. Sigl. In preparation.

A: 256^3 , fiducial run B: 256^3 , B seed 10^5 times higher than model A C: 256^3 , power in large *k* values D: 256^3 , power in small *k* values E: 512^3 , fiducial-like run with higher resolution

• box size = $200h^{-1}$ Mpc, with 10 levels of refinement

- MHD simulations being done by J. Devriendt (Oxford) and M.-S. Shin (KASI)
- adaptative mesh refinement (AMR) using the RAMSES code
- \bullet models A and B \rightarrow can we rescale the magnetic field? YES
- \bullet models A and E \rightarrow convergence for higher resolution? ROUHGLY
- models A, C and D \rightarrow does the initial seed of the magnetic field affect the distribution of magnetic fields? A LOT
- how do the results depend on the normalisation of the filling factors?

effects of seed fields

Propagation of High Energy Particles in Cosmic Magnetic Fields

effects of seed fields

Propagation of High Energy Particles in Cosmic Magnetic Fields

effects of the magnetic field normalisation

RAB, M.-S. Shin, J.Devriendt, D. Semikoz, G. Sigl. In preparation.

- three models derived from model E were tested
- above 10¹⁹ eV deflections are high, even if GMF is neglected
- spectrum is affected by the normalisation of the field
- example shown is for iron primaries

gamma rays

energy losses and interactions

- expansion of the universe
- inverse Compton scattering
- synchrotron losses
- pair production
- double pair production
- triple pair production

[Settimo+ 2012]

gamma-ray induced electromagnetic cascades

- gamma rays produce e^+e^- pairs
- e^{\pm} scatter background photons via inverse Compton
- therefore: point-like sources will appear extended [Plaga 1994]
- cascades \rightarrow lower limit on the strength on IGMF [Neronov & Semikoz 2009]
- cascades may explain the observed flux suppression at $E \sim 1 \,\text{GeV}$ [Neronov & Semikoz 2009, Vovk+ 2012]
- controversial issue: plasma instabilities may squelch the development of the cascades [Schlickeiser+ 2012, Broderick+ 2013, Saveliev+ 2013]
- electromagnetic cascades can also be induced by cosmic rays

GRPropa

- there are several computational tools for propagating electromagnetic cascades in the intergalactic medium (e.g. Elmag code [KachelrieB+ 2012])
- most codes are 1D and mimick magnetic deflections using the small angle approximation, including cosmological effects
- other codes are more complete and do the full 3D propagation, but they neglect cosmological effects
- GRPropa is a Monte Carlo package based on CRPropa 3.0 that allows full 3D simulations including cosmological effects ("4D mode")
- https://github.com/rafaelab/GRPropa
- arbitrary magnetic field configurations, source distributions, spectrum, and contains > 7 different EBL models

comparison with Elmag

blazar pair halos

- pair halos can be detected by the next generation of imaging air Cherenkov telescopes (e.g. CTA)
- $\bullet\,$ non observation of pair halos \rightarrow upper limit on the strength of IGMFs
- ${\color{black}\bullet}$ observation of pair halos ${\color{black}\to}$ favours cosmological origin of seed fields

helical magnetic fields

• magnetic helicity

$$\mathcal{H} = \int_{V} d^{3}r \, \vec{A} \cdot \vec{B}$$

- helicity is related to the topology of the field, and is approximately conserved (∂H/∂t ≈ 0)
- helicity may be a signature of CP violation during matter baryo- and leptogenesis
 - baryogenesis → right-handed helicity [Vachaspati 2001]
 - leptogenesis \rightarrow left-handed helicity [Long+ 2013]
- can we infer the helicity of IGMFs from gamma ray observations? [Long+ 2013]

Patches of radius *R* are centred on the highest energy gamma rays; the distribution of lower energy (GeV) photons along spirals indicates the helicity [*Tashiro+ 2013, Tashiro+2014*]

signatures of helical fields in 3D simulations

GRPropa simulations, B = 10 fG, $dN/dE \propto E^{-2}$ [PRELIMINARY]

R. Alves Batista, A. Saveliev, G. Sigl, T. Vachaspati. In preparation.

conclusions and outlook

- it is difficult to come up with models to explain the three main observables (spectrum, composition and arrival directions) \rightarrow fast computational tools \rightarrow CRPropa
- our limited knowledge of cosmic magnetic fields is a limiting factor for identifying the sources of UHECRs
- new MHD simulations of the local universe suggest that UHECR astronomy might not be possible with current facilities such as Auger (maybe never??)
- imprints of IGMFs in the arrival directions of UHECRs \rightarrow can we constrain these fields using cosmic rays?
- magnetic horizons of UHECR depend on the distribution of magnetic fields in the universe

conclusions and outlook

- it is difficult to come up with models to explain the three main observables (spectrum, composition and arrival directions) \rightarrow fast computational tools \rightarrow CRPropa
- our limited knowledge of cosmic magnetic fields is a limiting factor for identifying the sources of UHECRs
- new MHD simulations of the local universe suggest that UHECR astronomy might not be possible with current facilities such as Auger (maybe never??)
- imprints of IGMFs in the arrival directions of UHECRs \rightarrow can we constrain these fields using cosmic rays?
- magnetic horizons of UHECR depend on the distribution of magnetic fields in the universe
- GRPropa: new code for propagating gamma rays in the universe considering arbitrary configurations of magnetic fields
- \bullet observation of blazar pair halos \rightarrow limits on the strength of IGMFs \leftarrow new generation of IACTs
- we have shown the feasibility of inferring magnetic helicity from arrival directions of gamma rays → cosmological magnetogenesis