
neutrinos

Rafael Alves Batista

rafael.alves.batista@desy.de

II. Institute for Theoretical Physics 
University of Hamburg 

Hamburg
08/04/2015

on the cosmological propagation of high 
energy particles in magnetic fields

PhD defense 

mailto:rafael.alves.batista@desy.de


Rafael Alves Batista   | Hamburg,  April 8th, 2015   |   On the cosmological propagation of high energy particles in magnetic fields

introduction

‣matter distribution

‣magnetic fields

‣photon backgrounds

UHECRs

‣overview

‣CRPropa

‣magnetic fields

‣gamma rays

‣neutrinos
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outline of this talk
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propagation picture

magnetic fields 

- extragalactic (filaments, 
sheets, clusters, voids)

- galactic
sources 

- AGNs

- GRBs

- magnetars

? ... 

primary nuclei

possible 
secondary 

nuclei

neutral particles

interactions/energy losses 

- pair production

- photopion production

- expansion of the universe

- photodisintegration

- nuclear decay

- Compton

- synchrotron emission

secondary 
gamma rays and 

neutrinos
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‣ sources of some particles are not known

‣ sources may be related to the matter distribution in the 
universe

‣ the presence of photon backgrounds (e.g. CMB, CIB, ...) 
permeating the universe provide a medium where interactions  
can take place

‣ cosmic magnetic fields (galactic and extragalactic) can affect the 
trajectory of particles 

introduction
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matter 
distribution

photon 
backgrounds

magnetic 
fields
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matter distribution in the universe
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C
redits: Illustris C
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photon backgrounds
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cosmic magnetic fields: extragalactic
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Das et al.
Donnert et al.

Miniati,MNRAS 337 (2002) 199

Dolag et al. JCAP 01 (2005) 09

Das et al. ApJ 682 (2008) 29

Donnert et al. MNRAS 392 (2009) 1008
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cosmic magnetic fields: galactic
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Jansson & Farrar, ApJ 757 (2012) 14

Jansson & Farrar ApJL 761 (2012) L11 
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cosmic rays
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ultra-high energy cosmic rays (UHECRs)

‣ where do they come from?

‣ what are they made of?

‣ how are they accelerated?

‣ what is the maximum energy they can reach?

‣ do we see a GZK cutoff

‣ where does the transition between galactic and 
extragalactic cosmic rays take place?

‣ where does the transition between diffusive and 
ballistic regimes happen?

fundamental 
questions

some 
problems

‣ observables from CR experiments: spectrum, composition, anisotropy

‣ cosmic magnetic fields (galactic and extragalactic) are important

‣ test new physics scenarios using UHECRs
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the cosmic ray spectrum
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interactions and energy loss processes

12
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interactions and energy loss processes

13
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the “disappointing” model

14

‣ highest energy cutoff due to maximum acceleration of sources

‣ no GZK effect

Aloisio et al., Astropart. Phys. 34 
(2011) 620



‣ UHECR “tomography”

‣ simulation of events recording its full 
trajectory, changing its initial angle within a 
cone of θ
‣ the average over 100 realization for each 

angle is plotted

‣ high deflections observed when particles 
cross structures

‣ useful for cross checks

‣ size of the structure is given by the angle of 
the cone in which the deflections start to 
become small, and the size (trajectory 
length) around peaks
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deflections in extragalactic magnetic fields

15

RAB, J. Devriendt, D. Semikoz, M.-S. Shin, G. Sigl. In preparation.

preliminary

preliminary
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UHECRs from individual sources

16

iron primaries
proton primaries

blue: no B field
red: with B field

Sigl. JCAP 08 (2004) 012
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UHECR astronomy?

17

Dolag et al. JETP 79(2004) 583

Sigl, Miniati, Ensslin. PRD 70 

(2004) 043007
100<E [EeV]<1000

‣ cumulative deflections displayed are for 
protons

‣ Sigl+: deflections are high

‣ Dolag+: deflections are small

‣ for heavy nuclei deflections can be even 
higher

‣ UHECR astronomy may be possible in the 
later but not in the former scenario 



protons
no energy losses
dN/dE ∝E-2

model E

preliminary

preliminary
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UHECR astronomy?

18

UHECR astronomy depends on 
magnetogenesis process (initial conditions)

RAB, J. Devriendt, D. Semikoz, M.-S. Shin, G. Sigl. In preparation.

‣ 200 Mpc/h box

‣ simulations being done by M.-S. Shin, J. 
Devriendt, ...

‣ adaptative mesh refinement (AMR) 
using the RAMSES code [Teyssier ’02]

‣ 10 levels of refinement 

preliminary
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‣ magnetic fields can affect the shape of the 
spectrum, so they should be taken into 
account when performing simulations text for 
one column no picture slide

‣ universal spectrum → expected for a uniform 
source distribution (separation << propagation 
lengths) → no magnetic field effects

‣ deviations from universal spectrum for pure 
iron composition

‣ large scale structures (magnetic field) + 
cosmological effects + energy losses → 
realistic simulations

‣ cosmological effects may be relevant, mainly at 
energies ~ EeV

‣ need to include cosmological effects in 3D 
simulations → 4D simulations

cosmological effects + magnetic fields

19

RAB, Schiffer, Sigl. NIM A 742 (2014) 245
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spectrum-composition fits
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‣ combined spectrum-composition (1D) fits of the Auger spectrum/
composition [Aloisio+ ’13, Taylor ’13]

‣ mixed composition; maximum source acceleration cutoff (no GZK)

‣ results suggest an extra (light) class of sources below the ankle might 
be needed → Auger + KASCADE-Grande data

‣ hard spectra “problem” [Taylor ’13]: these fits seem to suggest that the 
sources have spectral indexes harder than expected (γ≈1.0-1.6); 
expected γ≈2.0-2.2 for Fermi acceleration

‣ magnetic horizon effects might soften the hard spectra, making it again 
compatible with Fermi shock acceleration [Mollerach & Roulet ’13]

‣ magnetic horizon effects do not play a role at EeV energies in realistic 
extragalactic magnetic field models [RAB & Sigl ’14]

‣ caveat 1: hadronic interaction models can fail to describe interactions 
at the highest energies (e.g. muon problem [Auger ’14])

‣ caveat II: source distribution, magnetic field model, nearby sources, etc 
→ shape of the spectrum is sensitive to these parameters

Aloisio, Berezinsky, Blasi arXiv:1312.7459
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gamma rays
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main interactions 

‣ cosmic microwave background (CMB)

‣ cosmic infrared background (CIB)

‣ cosmic infrared and optical background 
(CIOB)

‣ universal radio background (URB)

energy losses 

‣ pair production

‣ double pair production

‣ adiabatic expansion of the universe

22

interactions and energy losses

Settimo & Domenico.  Astropart. Phys. 62 (2014) 92
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TeV-GeV  flux “problem”
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solutions 

‣ B>10-17 G disperses the GeV cascade [Neronov & Vovk ’10,  Taylor+ ’11]

‣ plasma instabilities suppresses the development of the cascades [Broderick+ ’11]

‣ primary CRs continuously produces TeV gamma rays [Essey+ ’11] 

‣ Lorentz invariance violation [Mavromatos ’10]

‣ gamma ray mixing with ALPs or hidden photons [Horns+ ’12]

injection of gamma rays overproduces GeV and 
underproduces TeV photons
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‣ time delayed photons from primary gamma rays 
[Plaga ’94, Murase+ ’08]

‣  gamma rays emitted by blazars

‣ gamma rays produce e+e- pairs →  scatter 
background photons via inverse Compton

‣ point-like sources will appear extended [Plaga ’94]

‣ cascades →  lower limits on the extragalactic 
magnetic field [Neronov & Semikoz ’09]

‣ flux suppression at E~GeV [Neronov & Semikoz ’09, 
Vovk+ ’12]

‣ controversial issue: plasma instabilities may play a 
role and suppress the development of the cascades 
[Saveliev+ ’13]

‣ can be induced by gamma rays and high energy 
cosmic rays

electromagnetic cascades

24

Figure by Andrey Saveliev

N
eronov, Vovk. Science 328 (2010) 73
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electromagnetic cascades
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ultra-high energy photons

26
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results obtained with the EleCa code 
[Settimo & De Domenico ’14]
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‣ text for one column no picture slide

27

cosmic rays

neutrinos
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pion production and neutrinos
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‣ injection of pions with 
energy Eπ

‣ energy loss: dE/dt ~ Eπ2 
E0,μ (energy at which 
decay equals energy 
losses)

flavors are sensitive to source physics
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high energy neutrinos

IceCube Collab. Science 
342 (2013) 6161
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galactic sources 

‣ hypernovae [Fox+ ’13,  Ahlers & Murase ’14]

‣ diffusive galactic emission [Ahlers & Murase ’14, Neronov+ ’14]

‣  unidentified galactic gamma ray sources [Fox+ ’13]

extragalactic sources

‣ galaxy clusters [Berezisnky+ ’97, Murase+ ’13]

‣ starburst galaxies [Loeb & Waxman ’06, Murase+ ’13] 

‣ AGNs [Stecker+ ’91]

‣ GRBs [Murase & Ioka ’13]

‣ extragalactic hypernovae [Liu+ ’14]

origin of high energy neutrinos

30
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origin of high energy neutrinos

cosmogenic 
origin
[Sigl & van Vliet ’14]

GRB origin  
[Baerwald+ ’14]

cosmogenic and GRB neutrinos cannot easily 
explain IceCube PeV neutrinos
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origin of high energy neutrinos
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Murase et al. PRD 
90 (2014) 023010

cosmic ray reservoirs 

‣ cosmic ray reservoir (e.g.: starburst 
galaxies, clusters, etc)

‣ hadronuclear origin (pp scenario)

‣ escape of cosmic rays generate 
neutrinos

‣ explain simultaneously Fermi and 
IceCube data
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‣ Fermi bubbles origin still unknown  →  can 
produce associated neutrinos

‣ small extended excess in IceCube data → 
galactic center or Fermi bubbles? (not significant)

Fermi Bubbles and neutrinos

33
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neutrinos
CRPropa: 
simulating the propagation of 
high energy particles
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‣ explain these three observables

‣ explain also gamma ray and neutrino counterparts

‣ magnetic fields and source distribution may affect 
spectrum and composition, and certainly affect 
anisotropy

‣ 3D simulations are needed

‣ large parameter space → fast simulations

cosmic ray observables
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CRPropa 2 

‣ “official” release

‣ see Kampert et al. Astropart. Phys. 42 (2013) 41 

‣ 1D simulations with cosmology (e.g. source 
evolution, adiabatic losses, etc)

‣ 3D simulations in cosmic magnetic fields 
(uniform B, turbulent B, uniform grid)

‣ source (point sources, uniform distribution, 
density grid)

‣ interaction of particles with background 
photons (CMB, CIB, URB)

‣ secondary gamma rays (kinetic equations - 
DINT package)

‣ secondary neutrinos

‣ some improvements suggested by Kalashev & 
Kido arXiv:1406.0735

36

CRPropa code

CRPropa 3 

‣ development version

‣ see RAB et al. arXiv:1307.2643

‣ complete redesign of the code

‣ modular structure and python steering

‣ parallel processing

‣ 3D simulations with cosmology (“4D mode”)

‣ galactic magnetic field through lenses

‣ MC photon propagation (EleCa code)

‣ large scale magnetic fields through smooth 
particle formalism

‣ updated photodisintegration cross sections

‣ more IRB models

‣ improved interaction rate tables

http://crpropa.desy.de

http://arxiv.org/abs/1406.0735
http://arxiv.org/abs/1307.2643
http://crpropa.desy.de
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1D example: UHECRs + secondaries

37

cosmic rays

gamma rays neutrinos
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‣ MHD simulation: Miniati ’02

‣ maximum rigidity = 1000 EeV

‣ maximum source distance = 4 Gpc

‣ sources following LSS baryon density

‣magnetic field from the grid

‣ composition: 52% proton, 27% helium, 
13% nitrogen, 8% iron

‣minimum energy = 1 EeV

3D simualtion setup: large scale structure

38

magnetic field baryon density
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‣ adiabatic losses + source evolution + 

magnetic fields → realistic description

‣ 4D mode drawback: slow compared to 
3D; particles are detected when its 
coordinates are within a hypervolume 
(3 spatial coordinates + time) around 
the observer

3D + 4D example: spectrum and composition

39
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3D example: anisotropies

40

only EGMF

EGMF + GMF

galactic lensing 

‣ assumes no energy losses

‣ each lens corresponds to a different 
energy bin

‣ lenses generated by backtracking protons 
to the galactic border

‣ nuclei have deflection Z times higher

‣ technique based on the PARSEC code 
[Bretz+ ’14]

‣ lenses are applied a posteriori
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‣ difficult to construct model to explain main observables (spectrum, composition and anisotropies)

‣ understanding cosmic magnetic fields is crucial for particle astronomy

‣ status: 

- UHECRs can have mixed composition  

- highest energy cutoff may be due to maximum source acceleration

- “local” sources may be needed

- extra light component below the ankle

‣ cosmogenic neutrino and photon fluxes depend on cosmic rays composition, maximum acceleration 
and distribution of sources

‣ IceCube results represent the dawn of the era of neutrino astronomy

‣ multimessenger studies are now essential to explore all dimensions of the same problem

‣ future multimessenger studies: cosmic rays + gamma rays + neutrinos + gravitational waves

summary and outlook

41

Thank you!


