

the inhomogeneous universe: matter distribution and magnetic fields

Rafael Alves Batista

II. Institute for Theoretical Physics University of Hamburg

rafael.alves.batista@desy.de

collaborators for this talk: G. Sigl, D. Kuempel, M.-S. Shin, J. Devriendt, D. Semikoz

L'Aquila - 04/06/2014

Wednesday, June 4, 2014

introduction

how to answer these questions?

magnetic field and matter distributions

- magnetic fields determine trajectory of particles
- sources may follow the matter distribution
- magnetic field and matter distribution may be correlated
- + to do UHECR astronomy: we need to understand magnetic fields (galactic and extragalactic)
- + signatures of magnetic field and matter distributions may be imprinted in on experimental data (spectrum, composition and anisotropies)

nature

UHECRs observables

spectrum

composition

 magnetic fields and source distribution may affect spectrum and composition, and certainly affect anisotropy

- explain these observables simultaneously
- 3D models are needed

Wednesday, June 4, 2014

motivation

overview

- + magnetic fields and matter distribution can affect the shape of the spectrum
- + sources may be distributed according to the matter distribution
- + cosmological effects can be relevant depending on the magnetic fields, even for nearby sources, depending on the properties of the intervening magnetic fields (e.g. diffusion)
- fit the spectrum and composition might not be enough to obtain physical scenarios to explain UHECRs => anisotropies can be important

a few works making predictions about some of these observables

- + dip model Berezinsky et al. **S C**
- disappointing model Aloisio et al. S C
- + Allard et al. S C
- Hooper & Taylor SC
- + Sigl et al. S C A
- + Dolag et al. 🗛
- many others

Spectrum Composition Anisotropy

Berezinsky et al. Phys. Rev. D 74 (2006) 043005 Aloisio et al. Astropart. Phys. 34 (2011) 620 Allard et al. JCAP 10 (2008) 033 Hooper and Taylor, Astropart. Phys. 33 (2010) 151 Sigl et al. Phys. Rev. D 68 (2003) 043002 Sigl et al. Phys. Rev. D 70 (2004) 043007 Dolag et al. JCAP 0501 (2005) 009

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

The inhomogeneous Universe: matter distribution and magnetic fields

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

simulating the propagation of UHECRs

propagation codes

- + CRPropa 3
 - code available in crpropa.desy.de RAB et al. Proceedings 33rd ICRC. arXiv:1307.2643
 - based on CRPropa 2 Kampert et al. Astropart. Phys. 42 (2013) 41
 - modular structure
 - parallel code \rightarrow faster simulations \rightarrow wide range of parameters
- other public codes:
 - SimProp Aloisio et al. JCAP 1210 (2012) 007
 - HERMES Domenico. EPJ Plus 128 (2013) 99
 - transport code Kalashev, Kuzmin, Semikoz. arXiv:astro-ph/9911035

ID simulations

- redshift losses
- source evolution
- no deflection by magnetic fields

3D simulations

- effects of large scale structure
- magnetic deflections
- + galactic lensing

matter distribution and magnetic fields

June/2014 - Gran Sasso

Wednesday, June 4, 2014

matter distribution

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

matter distribution

M. Vogelsberger et al. Nature 509 (2014).

Credits: Illustris Collaboration

cosmic magnetic fields

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

 $log(\lambda_{\rm R} [Mpc])$

Wednesday, June 4, 2014

structured magnetic fields

Wednesday, June 4, 2014

structured magnetic fields

- filling factors are not well known
- + they depend on how the cosmological simulation was done
- choice of normalization can result on different filling factors
- + we show only four cosmological simulations, but there are many others

Wednesday, June 4, 2014

galactic magnetic field (GMF)

total (regular+turbulent+striated)

June/2014 - Gran Sasso

Pakmor, Marinacci, Springel. arXiv:1312.2620

+ fit of observations: e.g. Jansson-Farrar model

✦ MHD simulations: e.g. Pakmor et al.

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

UHECRs and the galactic magnetic field

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

galactic magnetic field: UHECR lensing

E=140 EeV

E=60 EeV

Giacinti, Kachelriess, Semikoz, Sigl. JCAP 1008 (2010) 036.

black: $\delta < 10^{\circ}$ gray: $10^\circ < \delta < 25^\circ$ dark blue: $25^\circ < \delta < 40^\circ$ light blue: $40^{\circ} < \delta < 55^{\circ}$ green: $55^{\circ} < \delta < 70^{\circ}$ yellow: $70^\circ < \delta < 85^\circ$ orange: $85^\circ < \delta < 100^\circ$ magenta: $100^{\circ} < \delta$

dark blue: $-2.0 < \log(\rho/<\rho>) < -1.5$ light blue: $-1.5 < \log(\rho/<\rho>) < -1.0$ green: $-1.0 < \log(\rho/<\rho) < -0.5$ yellow: $-0.5 < \log(\rho/<\rho>) < 0.0$ orange: $0.0 < \log(\rho / < \rho >) < 0.5$ magenta: $0.5 < \log(\rho/<\rho>)$

- injected iron isotropically (from Earth)
- particles backtracked to the edge of the galaxy
- GMF model used: Prouza-Smida

- + "blind" spots
- strong deflections
- deflections depend on the GMF model

galactic magnetic field: UHECR lensing

June/2014 - Gran Sasso

- sources may have multiple images due to the GMF
- + sky sheets: no lensing \rightarrow regular grid; if the sheets are folded sources have multiple images

The inhomogeneous Universe: matter distribution and magnetic fields

GMF: model dependence

RAB & E. Kemp. 2012

- ★ 3000 protons events above 20 EeV (spec index = -2)
- + isotropic events injected at Earth and backtracked to the edge of the galaxy
- + HMR model: Harari, Mollerach, Roulet. JHEP 08 (1999) 022
- + SRWE model: Sun et al. A&A 592 (2008) 573

GMF: model dependence

GMF is model dependent

- most recent GMF model: Jansson & Farrar
 - obtained from the fit of the most recent RM and synchrotron data
 - null divergence condition satisfied

pictures shows deflection angles for 60
 EeV protons backtracked from Earth to the edge of the galaxy

 ◆ GMF strongly affects the propagation of UHECRs → finding sources of UHECRs
 require a deep understanding of the GMF

18

June/2014 - Gran Sasso

Wednesday, June 4, 2014

GMF: UHECR multiplets

M. Zimbres, RAB, E. Kemp. Astropart. Phys. 54 (2014) 54.

 \bullet events from a single source with different energies \rightarrow energy ordered structures

- analysis of the orientation of multiplets
 can constrain GMF models
- multiplets allow the reconstruction of the position of the source

Pierre Auger Collaboration. Astropart. Phys. 35 (2012) 354.

The inhomogeneous Universe: matter distribution and magnetic fields

UHECRs and extragalactic magnetic fields

June/2014 - Gran Sasso

The inhomogeneous Universe: matter distribution and magnetic fields

Wednesday, June 4, 2014

structured magnetic fields: an example

- MHD simulation from Miniati
- volume: (50h⁻¹ Mpc)³
- + EGMF set to zero in the beginning
- + magnetic field seed generated in shocks through the Biermann battery mechanism

propagation in the large scale structure

with magnetic field

no magnetic field

- matter distribution and magnetic field:
 Miniati MHD simulation
- sky above 40 EeV
- sources following matter distribution
- source density: 2.4x10⁻⁵ Mpc⁻³
- $+ \sim 2 \times 10^5$ events
- sky highly anisotropic above 40 EeV

Sigl, Miniati, Ensslin. PRD 68 (2003) 043002 Sigl, Miniati, Ensslin. PRD 70 (2004) 043007

UHECR astronomy?

- cumulative deflections displayed are for protons
- ✦ Sigl et al.: deflections are high
- Dolag et al.: lower deflections (constrained MHD simulation)
- for heavy nuclei the deflections can be even higher
- UHECR astronomy may be possible in the later scenario, but not in the former (in the full sky)

(2004) 583

Wednesday, June 4, 2014

The inhomogeneous Universe: matter distribution and magnetic fields

UHECR "tomography"

RAB, J. Devriendt, D. Semikoz, M.-S.

- new MHD simulations with kpc scale resolution being done by M.-S. Shin & J.
 Devriendt
- simulation volume: ~(200h⁻¹ Mpc)³
- ★ deflections of the order of 10 degrees for protons? → if magnetic field in clusters of galaxies is ~0.1 µG
- overall normalization of the magnetic field is extremely relevant for UHECR propagation
- + goal: is UHECR astronomy really possible?

The inhomogeneous Universe: matter distribution and magnetic fields

accounting for cosmological effects in 3D

RAB, Schiffer, Sigl. NIM A 742 (2014) 245

June/2014 - Gran Sasso

 magnetic fields can affect the shape of the spectrum, so they should be taken into account when performing simulations

 + universal spectrum → expected for a uniform source distribution (separation << propagation lengths) → no magnetic field effects

 deviations from universal spectrum for pure iron composition

+ large scale structures (magnetic field) +
 cosmological effects + energy losses → realistic
 simulations

- cosmological effects may be relevant, mainly at energies ~ EeV
- + need to include cosmological effects in 3D simulations → 4D simulations

magnetic diffusion at EeV energies

The inhomogeneous Universe: matter distribution and magnetic fields

UHECRs from individual sources

Sigl. JCAP 08 (2004) 012

- spectra and composition depend considerably on source magnetization, specially for nearby sources
- Iow time delay due to spallation of nucleons far from the source field
- ★ deflection is important \rightarrow compare energy loss/spallation time scales with time delays

combined extragalactic + galactic deflections

Wednesday, June 4, 2014

transition galactic-extragalactic CRs

Pierre Auger Collaboration. ApJ 762 (2013) L13

Anisotropy due to light galactic nuclei is too high

★ if composition around I EeV is light → CRs at this energy probably extragalactic → ankle due to pair production by protons

★ if composition around I EeV is heavy \rightarrow transition could be at the ankle if galactic nuclei are produced by frequent transients

Giacinti, Kachelriess, Semikoz, Sigl. JCAP 1207 (2012) 031

summary

- + understanding magnetic fields is important to determine the origin of UHECRs
- ✤ 3D simulations are needed
- matter distribution may be related to magnetic fields and sources of UHECRs
- + scenarios that fit the observations of only one observable (spectrum or composition or anisotropies) are quite easy to obtain
- + it is very difficult to construct a scenario that fits these three observables
- + cosmological effects as well as magnetic fields should be taken into account