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where do UHECRs come from?

how are the sources distributed?

how can particles be accelerated to such energies?

origin

what are UHECRs made of?nature

can we do UHECR astronomy?

‣ observables from CR experiments: spectrum, composition, anisotropy

‣ magnetic field determine the trajectory of particles

‣ magnetic fields and matter distribution may be correlated

‣ to do UHECR astronomy we need to understand magnetic fields (galactic and extragalactic)

‣ signatures of magnetic fields and matter distribution may be imprinted in experimental data

motivation
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‣ voids
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stars

‣magnetars
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‣galaxies

N
eronov, Vovk. Science 328 (2010) 73

‣ are there cosmological magnetic fields?

‣ how were the magnetic fields in the universe 
created?

- astrophysical (Biermann battery)

- cosmological (inflation, phase transitions)

‣ lower limits: electromagnetic cascades

‣ upper limits: Zeeman splitting

cosmic magnetic fields
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‣model A: 2563, fiducial-like

‣model B: 2563, initial B seed 105 times 
stronger

‣model C: 2563, power in small and 
large k range

‣model D: 2563, power in small k range

‣model E: 5123, fiducial-like

‣ 200 Mpc/h box

‣ simulations being done by M.-S. Shin, J. Devriendt, ...

‣ adaptative mesh refinement (AMR) using the RAMSES code [Teyssier ’02]

‣ 10 levels of refinement 

‣ comparison of models A and B → can we rescale the magnetic field? YES

‣ comparison of models A and E → convergence for higher resolution? MORE OR LESS

‣ models C and D → does the initial seed field affect UHECR deflection? A LOT

the MHD simulations
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‣model A: 2563, fiducial-like

‣model B: 2563, initial B seed 105 times 
stronger

‣model C: 2563, power in small and 
large k range

‣model D: 2563, power in small k range

‣model E: 5123, fiducial-like

‣ 200 Mpc/h box

‣ simulations being done by M.-S. Shin, J. Devriendt, ...

‣ adaptative mesh refinement (AMR) using the RAMSES code [Teyssier ’02]

‣ 10 levels of refinement 

‣ comparison of models A and B → can we rescale the magnetic field? YES

‣ comparison of models A and E → convergence for higher resolution? MORE OR LESS

‣ models C and D → does the initial seed field affect UHECR deflection? A LOT

the MHD simulations
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UHECR propagation 
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CRPropa  

‣ CRPropa [Armengaud+ ’07]: propagation of cosmic ray protons and secondary γ and υ
‣ CRPropa 2 [Kampert+ ’13]: extended for nuclei;  official release

‣ CRPropa 3 [RAB et al.  arXiv:1307.2643]: development version; complete redesign of the 
code, cosmology in 3D, galactic magnetic field, Monte Carlo UHE photon, ...

‣ available in crpropa.desy.de 

‣ 3D simulations with relevant energy 
losses due to the interaction with 
CMB and IRB

‣ detailed treatment of nuclear 
interactions

‣ for fast readout of the AMR grid, an 
interface between CRPropa and the 
grid was developed, based on SQLite

http://arxiv.org/abs/1307.2643
http://arxiv.org/abs/1307.2643
http://crpropa.desy.de
http://crpropa.desy.de
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effects of B seed

protons
no energy losses
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‣ simulation of events recording its full 
trajectory, changing its initial angle within a 
cone of θ
‣ the average over 100 realization for each 

angle is plotted

‣ high deflections observed when particles 
cross structures

‣ useful for cross checks

‣ size of the structure is given by the angle of 
the cone in which the deflections start to 
become small, and the size (trajectory 
length) around peaks

UHECR tomography

protons
no energy losses
dN/dE ∝E-2

model E



deflection [degrees]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

co
un

ts
 [a

.u
.]

0

50

100

150

200

250

300

350

400 total
voids
structures

Rafael Alves Batista     |     ECRS, Kiel, 2014     |     Propagation of UHECRs in cosmic magnetic fields8

model A

isolating the effect of structures
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fitting deflection in the voids with gaussian (assuming the 
magnetic field in the voids has gaussian distribution)

the gaussian is fitted up to the maximum of 
the distribution of deflection (left of the 
maximum), since most of the volume is 
dominated by voids

model A

isolating the effect of structures

protons
no energy losses
dN/dE ∝E-2

model E
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fitting deflection in the voids with gaussian (assuming the 
magnetic field in the voids has gaussian distribution)

the gaussian is fitted up to the maximum of 
the distribution of deflection (left of the 
maximum), since most of the volume is 
dominated by voids

the parameters from the fit are used 
to build a gaussian for the whole range 
of deflections (orange curve)

model A

isolating the effect of structures

protons
no energy losses
dN/dE ∝E-2

model E
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fitting deflection in the voids with gaussian (assuming the 
magnetic field in the voids has gaussian distribution)

the gaussian is fitted up to the maximum of 
the distribution of deflection (left of the 
maximum), since most of the volume is 
dominated by voids

the parameters from the fit are used 
to build a gaussian for the whole range 
of deflections (orange curve)

we subtract the effects of the voids 
(orange curve) from the total 
distribution (black curve) → 
deflection due to structures (green 
curve)

model A

isolating the effect of structures

protons
no energy losses
dN/dE ∝E-2

model E
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isolating the effects of structures
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models Ei: filling factors
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minimum model: 
normalized to lower 
limits in voids

models Ei: filling factors
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minimum model: 
normalized to lower 
limits in voids

archetype model: self 
consistent normalization 
from baryon density

models Ei: filling factors
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minimum model: 
normalized to lower 
limits in voids

archetype model: self 
consistent normalization 
from baryon density

maximum model: normalized 
to clusters of galaxies

models Ei: filling factors
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models Ei: spectrum and compostion
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‣ this is not a realistic scenario (in terms of 
composition); it is a test in of the effects of 
different magnetic field normalizations

‣ in this particular case the magnetic field 
normalization has a small effect on the 
spectrum

‣ the composition is significantly altered

‣ the deflections are obviously dependent on 
the way B is normalized

iron
with energy losses
dN/dE ∝E-2

model Ei
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models Ei: anisotropies
model E1 (EG)

model E1 (EG+G) model E2 (EG+G)

model E2 (EG) model E3 (EG)

model E3 (EG+G)

extragalactic only extragalactic + galactic

model E1 0.09 0.02

model E2 0.09 0.01

model E3 0.08 0.01

galactic magnetic field:
[Jansson & Farrar ’12]

GMF lensing technique 
from the PARSEC code:
[Bretz+ ’14]
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‣ combined spectrum-composition fits of the Auger data suggest hard spectral indexes (γ < 2) 
[Taylor ’13, Aloisio+ ’13] → the hard spectra “problem”

‣ standard shock acceleration mechanism → γ ≈ 2

‣ hard spectral indexes are compatible with acceleration by magnetars [Arons ’03], young pulsars 
[Fang+ ’12], ...

‣ lower energy magnetic suppression [Lemoine ’05, Aloisio & Berezinsky ’05]→ hard spectral 
indexes not needed [Mollerach & Roulet ’13]

‣ if this suppression sets in below 1018 eV hard spectral indexes are still needed

‣ strong suppression → softer spectral indexes (compatible with Fermi acceleration)

‣ with realistic models of extragalactic magnetic fields → magnetic horizon effects are not relevant 
at EeV energies and hard spectral indexes are still required [RAB & Sigl ’13]

‣ it is important to understand extragalactic magnetic fields, their distribution and strength

magnetic horizons
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RAB & Sigl. 
arXiv:1407.2643

upper limit

magnetic horizons

http://arxiv.org/abs/1307.2643
http://arxiv.org/abs/1307.2643
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new high resolution MHD simulations

‣ new MHD simulations with high resolution 
(~1 kpc)

‣ different magnetic field seeds affect the 
propagation of CRs 

normalization of the magnetic fields

‣ normal izat ion of magnetic fields in 
cosmological simulations are important

‣ how to normalize: at voids, clusters or in a 
self-consistent way?

‣ spectrum and composition can be affected 
by these assumptions

‣ anisotropy patterns will also be different

magnetic horizons

‣ magnetic horizons are only relevant at low 
energies (<1017 eV) in realistic extragalactic 
magnetic field models

‣ magnetic horizons were postulated to 
explain the hard spectral indexes obtained 
from fits of Auger data

‣ magnetic horizons may not solve this 
“problem” → UHECR sources may have 
hard spectral indexes

future

‣ working to constrain the simulations → 
most up-to-date extragalactic magnetic field 
model for UHECR propagation

summary & outlook
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new high resolution MHD simulations

‣ new MHD simulations with high resolution 
(~1 kpc)

‣ different magnetic field seeds affect the 
propagation of CRs 

normalization of the magnetic fields

‣ normal izat ion of magnetic fields in 
cosmological simulations are important

‣ how to normalize: at voids, clusters or in a 
self-consistent way?

‣ spectrum and composition can be affected 
by these assumptions

‣ anisotropy patterns will also be different

magnetic horizons

‣ magnetic horizons are only relevant at low 
energies (<1017 eV) in realistic extragalactic 
magnetic field models

‣ magnetic horizons were postulated to 
explain the hard spectral indexes obtained 
from fits of Auger data

‣ magnetic horizons may not solve this 
“problem” → UHECR sources may have 
hard spectral indexes

future

‣ working to constrain the simulations → 
most up-to-date extragalactic magnetic field 
model for UHECR propagation

Thank you!

summary & outlook
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‣ assumes no energy losses

‣ each “lens” corresponds to a different energy bin

‣ lenses generated by backtracking protons to the galactic 
border

‣ nuclei have deflection of Z times the deflection for protons

‣ technique based on the PARSEC code (arXiv:1302.3761)

‣ these lenses are applied to simulated data a posteriori

the galactic magnetic field

http://arxiv.org/abs/1302.3761
http://arxiv.org/abs/1302.3761
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of mass

conservation 
of momentum

conservation 
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conservation of 
magnetic flux

‣ code has to conserve energy, momentum

‣ div(B) = 0

‣ no viscosity

‣ colisionless MHD

‣ cooling, heat and other energy terms

‣ grid-scale processes: chemical reaction, convection, ...

‣ subgrid-scale processes: formation/death of objects, stellar dynamo, feedback, ...

MHD details


