Propagation of UHECRs over cosmological distances

Rafael Alves Batista, Peter Schiffer, Günter Sigl

II. Institute for Theoretical Physics University of Hamburg

rafael.alves.batista@desy.de

3rd Hamburg-Paris-Oxford Workshop on Astroparticle Physics with Multiple Messengers Oxford, January 17th, 2013

motivation: magnetic fields

motivation: magnetic fields

motivation: ID vs. 3D simulations

CRPropa and propagation of UHECRs

propagation

interactions neutral secondaries deflections in 3D redshifts in ID

observers

origin of coordinates spheres around the sources small spheres in the box

code

- CRPropa
- available in: crpropa.desy.de
- + Astropart. Phys. 42:41, fev., 2013

ID simulations

- redshift losses
- source evolution
- no deflection by magnetic fields

3D simulations

- effects of large scale structure
- magnetic deflections
- no redshift losses
- no source evolution

energy losses of UHE protons

pair production $p + \gamma \rightarrow \gamma + e^+ + e^$ pion production

$$p + \gamma \to \Delta^+ \to p + \pi^0 \to p + 2\gamma$$
$$p + \gamma \to \Delta^+ \to n + \pi^+ \to n + \mu^+ + \nu_\mu$$

redshift losses

scale parameter and redshift

$$a(t) = \frac{1}{1+z}$$

redshift evolution

$$\frac{dt}{dz} = \frac{1}{H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}}$$

energy losses

$$E = \frac{E_0}{1+z}$$

from Kotera, Olinto. Annu. Rev. Astron. Astrophys., 49, 2010.

the method

* "force" the spectrum to be equal for ID and3D

- use injected energy, propagation time and observed energy
- + obtain a (binned) correction table
- + analysis only for **protons** (so far)
- + extract a correction factor from the table
- + use this factor to correct the spectrum (a posteriori)
- correction applied to the propagation time and not the distance

the method

results

results

the propagation theorem

"for a uniform distribution of identical sources with separation much less than the characteristic propagation lengths, the diffuse spectrum of UHECRs has a universal (standard) form, independent of the mode of propagation" Aloisio, Berezinsky. ApJ., 612, 2004.

results: uniform magnetic field

results: Kolmogorov magnetic field

conclusions and perspectives

conclusions

 an a posteriori correction to the spectrum can account for energy losses of UHE protons due to the expansion of the universe

 this correction is applied to the propagation time and not the distance, and thus is applicable to simulations with magnetic fields

 it is possible to take into account magnetic fields and large scale structures when propagating these particles

perspectives

- Attempt to correct the spectrum for nuclei
- + incorporate these developments into the existing CRPropa code

Backup Slides

parameters

simulation parameters ID

- + comoving source evolution: $(1+z)^4$, $z_{max}=2$
- ACDM
- maximum rigidity: 1000 EeV
- minimum energy: 0.1 EeV
- + injection spectrum $\propto E^{-2.2}$
- hormalization: > 70 EeV

parameters

simulation parameters 3D (no mag. fields)

- homogeneous source distribution
- + maximum time: 4000 Mpc
- maximum rigidity: 1000 EeV
- minimum energy: 0.1 EeV
- injection spectrum $\propto E^{-2.2}$
- hormalization: > 70 EeV
- detection: sphere (radius=0.5 Mpc) around observer

parameters

simulation parameters 3D (mag. fields)

- + homogeneous source distribution
- + maximum time: 4000 Mpc
- maximum rigidity: 1000 EeV
- minimum energy: 0.1 EeV
- + injection spectrum $\propto E^{-2.2}$
- normalization: > 70 EeV
- + detection: sphere (radius=0.5 Mpc) around observer
- Kolmogorov field: coherence length

$$L_{c} = \frac{L_{max}}{2} \frac{\alpha - 1}{\alpha} \frac{1 - \left(\frac{L_{min}}{L_{max}}\right)^{\alpha}}{1 - \left(\frac{L_{min}}{L_{max}}\right)^{\alpha - 1}}$$

redshift losses

redshift losses

★ scale parameter and redshift $a(t) = \frac{1}{1+z}$

$$\frac{dt}{dz} = \frac{1}{H_0(1+z)\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}}$$

energy losses

$$\frac{dE}{dt} = -H_0E$$

correction using the formula

correction using the formula

